mrcImageVarianceAnalysis
mrcImageVarianceAnalysis is Eos's Command that performs Variance Analysis.
Contents
List of option
Main option
Option | Essential/Optional | Description | Default |
---|---|---|---|
-i | Optional | Input: ASCII(File List) | NULL |
-r | Optional | Ref: InputList | NULL |
-o | Optional | Output: Variance Probability | NULL |
-v | Optional | Output: Variance Analysis | NULL |
-c | Optional | ConfigurationFile | NULL |
-m | Optional | Mode | 0 |
-h | Optional | Help |
-m details
Value | Description |
---|---|
0 |
-i format
Input1 Input2 Input3 . . .
Iuput1, 2, ... format
mrcFile1 A B mrcFile2 A B . . . . . .
Algorithm of Variance Analysis
VarianceRatio := VarinceBetweenClasses/(SumOfVarianceWithinEachClass) VarinceBetweenClasses: variance between classes VarinceWithClasses: variance within each class
General Information
Kai-distribution: Kai^2 = SumOf (Xi - AvgOfXi)^2/sigma^2 = s^2*(n-1)/sigma^2 : degree of freedom n-1 when variables Xi are due to N(u, sigma^2) Kai-distribution: Kai^2 = Kai1^2 + Kai2^2 : degree of freedom m1 + m2 F-distribution: F = (Kai1^2/k1)/(Kai2^2/k2) : degree of freedom : (k1, k2) (s1^2/sigma1^2)/(s2^2/sigma2^2) : degree of freedom : (k1-1, k2-1) If sigma1 == sigma2, then s1^2/s2^2 (Variance Ratio) : degree of freedom : (k1-1, k2-1)
Execution example
Input file's data
/Eos/data/Input1.txt /Eos/data/Input2.txt /Eos/data/Input3.txt
/Eos/img/1VOM-40.mrc 0 1 /Eos/img/1VOM-45.mrc 1 1
![]() |
Min Max |
0 (0, 0, 0) 3077.54 (41, 49, 0) |
![]() |
Min Max |
0 (0, 0, 0) 3099.59 (17, 62, 0) |
/Eos/img/1VOM-50.mrc 0 1 /Eos/img/1VOM-55.mrc 0 1
![]() |
Min Max |
0 (0, 0, 0) 3095.88 (33, 57, 0) |
![]() |
Min Max |
0 (0, 0, 0) 3044.97 (51, 58, 0) |
/Eos/img/1VOM-60.mrc 0 1 /Eos/img/1VOM-65.mrc 0 1
![]() |
Min Max |
0 (0, 0, 0) 3026.91 (50, 47, 0) |
![]() |
Min Max |
0 (0, 0, 0) 3308.47 (26, 42, 0) |
Example of Input file only
![]() |
Min Max |
50.0673 (30, 27, 0) 100 (14, 67, 0) |
Min Max |
0.00134705 (30, 27, 0) 165008 (14, 67, 0) |
0 0 3 1 0 3 2 0 3 3 0 3 4 0 3 ... 28 27 1.06282 29 27 1.17063 30 27 0.00134705 31 27 0.0869645 32 27 0.158319 ... 12 67 4.90624 13 67 4.19018 14 67 165008 15 67 3.26777 16 67 2.0586 ... 75 79 3 76 79 3 77 79 3 78 79 3 79 79 3