Difference between revisions of "mrcImageNormalizing"
(→-m details) |
(→Execution example) |
||
Line 174: | Line 174: | ||
</tr> | </tr> | ||
</table> | </table> | ||
+ | |||
+ | === Option -m === | ||
+ | ==== Case: m=5 ==== | ||
+ | ===== Case: A=1, B=0 ===== | ||
+ | <table> | ||
+ | <tr> | ||
+ | <td>[[File:Outdata-m5-mrcImageNormalizing.png]]</td> | ||
+ | <td><p align="left">Min<br> | ||
+ | Max<br> | ||
+ | Mean<br> | ||
+ | SD<br> | ||
+ | SE<br></p> | ||
+ | </td> | ||
+ | <td><p align="left">-2.5693 (10, 1, 0)<br> | ||
+ | 4.5421 (24, 39, 0)<br> | ||
+ | -3.70619e-12<br> | ||
+ | 1<br> | ||
+ | 0.0125<br></p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | Data is Normalized as Mean=0, SD=1. | ||
+ | |||
+ | ===== Case: A=3, B=2 ===== | ||
+ | <table> | ||
+ | <tr> | ||
+ | <td>[[File:Outdata1-m5-mrcImageNormalizing.png]]</td> | ||
+ | <td><p align="left">Min<br> | ||
+ | Max<br> | ||
+ | Mean<br> | ||
+ | SD<br> | ||
+ | SE<br></p> | ||
+ | </td> | ||
+ | <td><p align="left">-5.70789 (10, 1, 0)<br> | ||
+ | 15.6263 (24, 39, 0)<br> | ||
+ | 2<br> | ||
+ | 3<br> | ||
+ | 0.0375<br></p> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | Data is Normalized as Mean=2, SD=3. |
Latest revision as of 04:55, 3 October 2014
mrcImageNormalizing is Eos's Command that performs normalizing the value of image.
Contents
List of option
Main option
Option | Essential/Optional | Description | Default |
---|---|---|---|
-i | Essential | Input: mrcImage | NULL |
-o | Essential | Output: mrcImage | NULL |
-A | Optional | A | 1.0 |
-B | Optional | B | 0.0 |
-ContourMin | Optional | ContourMin | 0.0 |
-ContourMax | Optional | ContourMax | 1.0 |
-ContourSolvent | Optional | ContourSolvent | 0.0 |
-c | Optional | ConfigurationFile | NULL |
-m | Optional | Mode | 0 |
-h | Optional | Help |
-m details
Value | Description |
---|---|
0 | Double Exponential: Solvent and Object Fitting histgram to double exponentials as Solvent and Object |
1 | Min-Max: Background and Object data = A*(data-Min)/(Max-Min) + B |
2 | Contour data = A*(data-ContourMin)/(ContourMax-ContourMin) + B |
3 | Contour and Solvent if data < ContourSolvent, data = ContourSolvent. After this, calculate the below. |
4 | No Estimation data = A*data + B |
5 | Assume the density as Gaussian data = A*Normalized(data) + B |
Execution example
Input file image
![]() |
Min Max |
-18651.7 (10, 1, 0) 52942.7 (24, 39, 0) |
Example of options only essential
![]() |
Min Max |
-0.00221962 (10, 1, 0) 0.00448009 (24, 39, 0) |
Option -A, -B
Case: A=1000, B=3
![]() |
Min Max |
0.780381 (10, 1, 0) 7.48009 (24, 39, 0) |
Option -m
Case: m=5
Case: A=1, B=0
![]() |
Min Max |
-2.5693 (10, 1, 0) 4.5421 (24, 39, 0) |
Data is Normalized as Mean=0, SD=1.
Case: A=3, B=2
![]() |
Min Max |
-5.70789 (10, 1, 0) 15.6263 (24, 39, 0) |
Data is Normalized as Mean=2, SD=3.