Difference between revisions of "mrcImageTiltAxisSearch"
(→Option -range) |
(→Option -range) |
||
Line 251: | Line 251: | ||
=== Option -range=== | === Option -range=== | ||
<div>Set the speculated misalignment of tilt axis.<br> | <div>Set the speculated misalignment of tilt axis.<br> | ||
− | Because it is | + | Because it is 10° in this case, it is speculated and set-range 0 20 0.1 .</div> |
<br> | <br> | ||
Revision as of 01:58, 4 August 2014
mrcImageTiltAxisSearch is傾斜軸のずれを計算する Eos's Command.
Contents
List of option
Main option
Option | Essential/Optional | Description | Default |
---|---|---|---|
-i | Optional | Input設定: mrcImage(ファイルが1つの時に設定) | NULL |
-I | Optional | Input設定: ASCII(軸を探すファイルのリストを設定) | NULL |
-r | Essential | Referenceを設定: mrcImage(傾斜角度0度のデータを設定) | NULL |
-o | Essential | Output設定: mrcImage | NULL |
-O | Optional | Output設定: ASCII(傾斜軸のずれを予測した値が入る) | stdout |
-range | Optional | 開始角度、終了角度、刻み幅の設定 | thetaMin=-90 thetaMax=+90 thetaDelta=1 |
-w | Optional | 相関を取る領域を設定 | 0.5 |
-M | Optional | Mode (インターポレーションの値の計算方法を選択。現段階では変更の必要なし) |
2 |
-CM | Optional | 17 | |
-c | Optional | ConfigurationFile | NULL |
-m | Optional | Mode | 0 |
-h | Optional | Help |
-M details
Value | Description |
---|---|
0 | Nearest neighbor method |
1 | Bi-linear interpolation method |
2 | Cubic convolution method |
3 | 多項式法 |
-CM details
Value | Description |
---|---|
0 | 正規相関:FxG* |
1 | 位相相関:FxG*/|FxG*| |
2 | 位相相関:FxG*/sqrt(|FxG*|) |
3 | 標準化された正規相関:FxG*/(|F||G|) |
16 | (0,0) = 0 |
Execution example
Input file's image
![]() |
Min Max |
-11367.8 (51, 62, 0) 51939.8 (29, 26, 0) |
![]() |
Min Max |
-14918 (53, 17, 0) 58621.8 (30, 26, 0) |
![]() |
Min Max |
-11517.4 (68, 34, 0) 41456.7 (51, 51, 0) |
![]() |
Min Max |
-10181.1 (29, 12, 0) 47629.2 (45, 47, 0) |
Reference file image
![]() |
Min Max |
0 (0, 0, 0) 49749.7 (27, 28, 0) |
Option -range
Because it is 10° in this case, it is speculated and set-range 0 20 0.1 .
Option -i
Min Max |
1.66094 (178, 0, 0) 2.98337 (17, 0, 0) |
0 0 2.11606 1 0 2.27825 2 0 2.39837 3 0 2.48984 4 0 2.56434 ... 15 0 2.84687 16 0 2.89484 17 0 2.98337 18 0 2.92074 19 0 2.83747 ... 176 0 1.8126 177 0 1.75571 178 0 1.66094 179 0 1.77095 180 0 1.86408 ... 196 0 1.96959 197 0 1.92914 198 0 1.90422 199 0 1.89453 200 0 1.89396
9.668
Option -I
Min Max |
1.66094 (178, 3, 0) 5.97202 (199, 1, 0) |
0 0 4.65631 1 0 4.65526 2 0 4.65832 3 0 4.66586 4 0 4.67802 ... 197 1 5.96871 198 1 5.97113 199 1 5.97202 200 1 5.97128 0 2 1.86252 ... 176 3 1.8126 177 3 1.75571 178 3 1.66094 179 3 1.77095 180 3 1.86408 ... 196 3 1.96959 197 3 1.92914 198 3 1.90422 199 3 1.89453 200 3 1.89396
10.146
In the following, Setting at -I
Option -w
Case: w=0.3
Min Max |
1.23539 (185, 3, 0) 4.24526 (176, 0, 0) |
0 0 3.68699 1 0 3.65896 2 0 3.63381 3 0 3.61121 4 0 3.59092 ... 174 0 4.22654 175 0 4.23925 176 0 4.24526 177 0 4.24387 178 0 4.2353 ... 183 3 1.25732 184 3 1.24203 185 3 1.23539 186 3 1.25265 187 3 1.26904 ... 196 3 1.38081 197 3 1.3898 198 3 1.39842 199 3 1.40678 200 3 1.41503
9.959
Option -M
Case: M=0
Min Max |
1.49726 (123, 2, 0) 5.98241 (194, 1, 0) |
0 0 5.09922 1 0 5.09922 2 0 5.09922 3 0 5.09922 4 0 5.09922 ... 192 1 5.96451 193 1 5.9541 194 1 5.98241 195 1 5.94377 196 1 5.84344 ... 121 2 2.04668 122 2 1.64817 123 2 1.49726 124 2 2.02508 125 2 1.96064 ... 196 3 2.36013 197 3 2.18772 198 3 2.17512 199 3 2.05867 200 3 1.86606
10.003
Case: M=1
Min Max |
1.4577 (171, 3, 0) 6.07152 (198, 1, 0) |
0 0 5.62558 1 0 5.64422 2 0 5.66207 3 0 5.67922 4 0 5.6957 ... 196 1 6.06964 197 1 6.07106 198 1 6.07152 199 1 6.07098 200 1 6.06985 ... 169 3 1.55818 170 3 1.48867 171 3 1.4577 172 3 1.49909 173 3 1.62042 ... 196 3 1.7818 197 3 1.79882 198 3 1.79487 199 3 1.77391 200 3 1.86874
10.066
Case: M=3
Min Max |
1.06309 (200, 2, 0) 5.74525 (196, 0, 0) |
0 0 3.49023 1 0 3.59306 2 0 3.59611 3 0 3.59923 4 0 3.60242 ... 194 0 5.68631 195 0 5.72896 196 0 5.74525 197 0 5.68198 198 0 5.68832 ... 198 2 1.06931 199 2 1.10243 200 2 1.06309 0 3 2.099 1 3 2.39454 ... 196 3 1.40634 197 3 1.27379 198 3 1.43405 199 3 1.32319 200 3 1.31033
10.528
Option -CM
Case: CM=0
Min Max |
2.22243e+12 (200, 3, 0) 2.76642e+12 (0, 0, 0) |
0 0 2.76642e+12 1 0 2.76593e+12 2 0 2.7655e+12 3 0 2.7651e+12 4 0 2.76475e+12 ... 196 3 2.22279e+12 197 3 2.22268e+12 198 3 2.2226e+12 199 3 2.22252e+12 200 3 2.22243e+12
9.973
Case: CM=16
Min Max |
4.25548e+10 (34, 2, 0) 4.59601e+11 (40, 0, 0) |
0 0 4.5856e+11 1 0 4.58461e+11 2 0 4.58368e+11 3 0 4.58283e+11 4 0 4.58207e+11 ... 38 0 4.5955e+11 39 0 4.59586e+11 40 0 4.59601e+11 41 0 4.59589e+11 42 0 4.59553e+11 ... 32 2 4.33837e+10 33 2 4.2829e+10 34 2 4.25548e+10 35 2 4.29276e+10 36 2 4.33223e+10 ... 196 3 1.00736e+11 197 3 1.00591e+11 198 3 1.00438e+11 199 3 1.0027e+11 200 3 1.00082e+11
9.979
Case: CM=18
Min Max |
182002 (115, 2, 0) 921359 (119, 0, 0) |
0 0 854840 1 0 855240 2 0 855704 3 0 856251 4 0 856892 ... 117 0 921121 118 0 921303 119 0 921359 120 0 921286 121 0 921070 ... 113 2 184920 114 2 182180 115 2 182002 116 2 182423 117 2 183137 ... 196 3 266598 197 3 267662 198 3 268966 199 3 270519 200 3 272332
10.020
Case: CM=19
Min Max |
0.00308662 (34, 2, 0) 0.0317806 (42, 0, 0) |
0 0 0.0314164 1 0 0.0314149 2 0 0.0314133 3 0 0.0314116 4 0 0.0314101 ... 40 0 0.0317746 41 0 0.0317788 42 0 0.0317806 43 0 0.0317806 44 0 0.0317788 ... 32 2 0.00314582 33 2 0.0031061 34 2 0.00308662 35 2 0.00311397 36 2 0.0031428 ... 196 3 0.00750586 197 3 0.00749485 198 3 0.00748321 199 3 0.00747043 200 3 0.00745608
10.015