主成分分析

提供: Eospedia
2014年8月1日 (金) 06:33時点におけるKinoshita (トーク | 投稿記録)による版

移動: 案内検索

主成分分析(Principal Component Analysis)とは、多変量からなるベクトルデータの集合から、多変量軸(多変量空間)から、ベクトルデータの分布がより大きくなる軸を主軸として求める手法である。

Fig-PCA.png

主成分分析の実行例

画像毎の主成分分析

主にmrcImagePCAを使用して、複数画像の分類を行う。


Input-PCA.png
10通りの回転画像に10通りのノイズをそれぞれ掛けている。(計100個)


まず、mrcImagePCAを使用して主軸を求める。


NO2_ROI_LISTのデータ
Target-1-0-0-0.nroi
Target-1-0-0-1.nroi
Target-1-0-0-2.nroi
Target-1-0-0-3.nroi
Target-1-0-0-4.nroi
Target-1-0-0-5.nroi
Target-1-0-0-6.nroi
Target-1-0-0-7.nroi
Target-1-0-0-8.nroi
Target-1-0-0-9.nroi
Target-37-0-0-0.nroi
Target-37-0-0-1.nroi

-中略-

Target-289-0-0-8.nroi
Target-289-0-0-9.nroi
Target-325-0-0-0.nroi
Target-325-0-0-1.nroi
Target-325-0-0-2.nroi
Target-325-0-0-3.nroi
Target-325-0-0-4.nroi
Target-325-0-0-5.nroi
Target-325-0-0-6.nroi
Target-325-0-0-7.nroi
Target-325-0-0-8.nroi
Target-325-0-0-9.nroi


TEST_PCA_LISTのデータ
Target-1-0-0-0.tpca
Target-1-0-0-1.tpca
Target-1-0-0-2.tpca
Target-1-0-0-3.tpca
Target-1-0-0-4.tpca
Target-1-0-0-5.tpca
Target-1-0-0-6.tpca
Target-1-0-0-7.tpca
Target-1-0-0-8.tpca
Target-1-0-0-9.tpca
Target-37-0-0-0.tpca
Target-37-0-0-1.tpca

-中略-

Target-289-0-0-8.tpca
Target-289-0-0-9.tpca
Target-325-0-0-0.tpca
Target-325-0-0-1.tpca
Target-325-0-0-2.tpca
Target-325-0-0-3.tpca
Target-325-0-0-4.tpca
Target-325-0-0-5.tpca
Target-325-0-0-6.tpca
Target-325-0-0-7.tpca
Target-325-0-0-8.tpca
Target-325-0-0-9.tpca


コマンド
mrcImagePCA -i NO2_ROI_LIST -o TEST_PCA_LIST -NX 39 -NY 39 -numE 20 -O EIGEN_INFO -E eigen -EPS 100;


コマンド実行後に固有値を確認します。